Upper Bounds for the First Eigenvalue of the Laplacian of Hypersurfaces in Terms of Anisotropic Mean Curvatures
نویسنده
چکیده
We prove upper bounds for the first eigenvalue of the Laplacian of hypersurfaces of Euclidean space involving anisotropic mean curvatures. Then, we study the equality case and its stability.
منابع مشابه
Pinching of the First Eigenvalue of the Laplacian and almost-Einstein Hypersurfaces of the Euclidean Space
In this paper, we prove new pinching theorems for the first eigenvalue λ1(M) of the Laplacian on compact hypersurfaces of the Euclidean space. These pinching results are associated with the upper bound for λ1(M) in terms of higher order mean curvatures Hk. We show that under a suitable pinching condition, the hypersurface is diffeomorpic and almost isometric to a standard sphere. Moreover, as a...
متن کاملUpper Bounds for the First Eigenvalue of the Laplacian on Compact Submanifolds
Let (M, g) be a compact Riemannian manifold isometrically immersed in a simply connected space form (euclidean space, sphere or hyperbolic space). The purpose of this paper is to give optimal upper bounds for the first nonzero eigenvalue of the Laplacian of (M, g) in terms of r-th mean curvatures and scalar curvature. As consequences, we obtain some rigidity results. In particular, we prove tha...
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کامل$L_k$-biharmonic spacelike hypersurfaces in Minkowski $4$-space $mathbb{E}_1^4$
Biharmonic surfaces in Euclidean space $mathbb{E}^3$ are firstly studied from a differential geometric point of view by Bang-Yen Chen, who showed that the only biharmonic surfaces are minimal ones. A surface $x : M^2rightarrowmathbb{E}^{3}$ is called biharmonic if $Delta^2x=0$, where $Delta$ is the Laplace operator of $M^2$. We study the $L_k$-biharmonic spacelike hypersurfaces in the $4$-dimen...
متن کامل$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures
Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...
متن کامل